HOW TO CONNECT THE ESP32 UP AS A

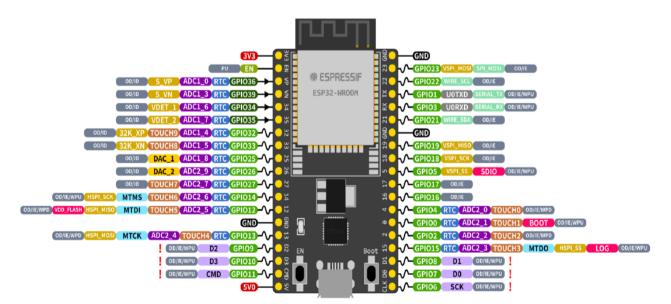
VOLTMETER

EXCERPT FROM THE MICROPYTHON ONLINE MANUAL

from machine import ADC

adc = ADC(pin) # create an ADC object acting on a pin val = adc.read_u16() # read a raw analog value in the range 0-65535 val = adc.read_uv() # read an analog value in microvolts

CIRCUIT SETUP USED HERE :


Use pin25 3.3V across pot : Terminal 1 to 3.3V Terminal 3 to GND Terminal 2 = Wiper to Pin 25

Terminals in a Variable Resistor

ESP32-DevKitC

ECD22 Cooce

```
import machine
import sys
import utime
# Pin definitions
adc_pin = machine.Pin(25)
# Create an ADC object out of our pin object
adc = machine.ADC(adc_pin)
# 11 dB attenuation means full 0 - 3.3V range
adc.atten(adc.ATTN_11DB)
i = 0
val1 = 3.3
while True:
  # Read ADC and convert to voltage
  val2 = adc.read()
  val2 = val2 * (3.3 / 4095)
  change = 1000 * (val1 - val2)
  percent = (100*change)/(1000*val2)
  print(i, " ", round(val2, 6), " V change = ", round(change, 2), "mV change = ",
round(percent, 2), "%")
  val1 = val2
  i = i + 1
  # Wait 2 secs before taking another reading
  utime.sleep_ms(2000)
```

Note : If you have trouble halting the program (because you want to make changes to better suit your purposes) then the best tactic is to momentarily press the EN button on the ESP32 (bottom left on diagram) on the ESP32 Dev Kit

```
Test Results :

1 0.535897 V change = 0.0 mV change = 0.0 %

2 0.53348 V change = 2.42 mV change = 0.45 %

3 0.534286 V change = -0.81 mV change = -0.15%

4 0.534286 V change = 0.0 mV change = 0.0 %

5 0.536703 V change = -2.42 mV change = -0.45%
```

6	0.534286 V change = 2.42 mV change = 0.45 %
7	0.535897 V change = -1.61 mV change = -0.3 %
8	0.535897 V change = 0.0 mV change = 0.0 %
9	0.534286 V change = 1.61 mV change = 0.3 %
10	0.53348 V change = 0.81 mV change = 0.15 %
11	0.534286 V change = -0.81 mV change = -0.15%
12	0.534286 V change = 0.0 mV change = 0.0 %
13	0.53348 V change = 0.81 mV change = 0.15 %
14	0.53348 V change = 0.0 mV change = 0.0 %
15	0.535897 V change = -2.42 mV change = -0.45%
16	0.535897 V change = 0.0 mV change = 0.0 %
17	0.536703 V change = -0.81 mV change = -0.15%
18	0.535092 V change = 1.61 mV change = 0.3 %
19	0.534286 V change = 0.81 mV change = 0.15 %
20	0.536703 V change = -2.42 mV change = -0.45%
21	0.536703 V change = 0.0 mV change = 0.0 %
22	0.53348 V change = 3.22 mV change = 0.6 %
23	0.534286 V change = -0.81 mV change = -0.15%
24	0.537509 V change = -3.22 mV change = -0.6 %
25	0.53348 V change = 4.03 mV change = 0.76 %
26	0.535897 V change = -2.42 mV change = -0.45%

Mean Voltage = 0.534 SD of the measured voltages = 1.3 mV CV% of the measured voltages = 0.24%

Sources of the variability were not ascertained but are probably a combination of noise within the ADC plus the pickup of mains 'hum' by the unshielded wiring of the circuit.

Tom Hartley : April 2023